

Engineered wood products in New Zealand: Trends, perceptions and resources

Engineered wood products (EWPs)

What are EWPs?

BRANZ survey on EWP uptake and usage

EWP resources

- Codes and standards
- Manufacturer information
- BRANZ
- Universities
- Organisations

Summary and moving forward

BRANZ What are EWPs?

- Primarily structural applications
- Laminated veneer lumber (LVL)
- Glue-laminated timber (glulam)
- Cross-laminated timber (CLT)
- Finger-jointed timber

BRANZ What are EWPs?

Panel products

- Plywood
- Oriented strand board (OSB)
- Strandboard (NZ)
- Particleboard
- Fibre-cement

BRANZ What are EWPs?

Composite products and systems

- I-joists
- Structural insulated panels (SIPs)
- Wood plastic composites (WPCs)
- Triboard (NZ)
- Timber concrete composites (TCC)
- Post-tensioned timber (Preslam)
- Stress-skin panels
- Box beams

- Survey in early 2019
- Collaboratively developed (Gary Raftery, Kate Bryson and BRANZ)
- 17 questions
- Nearly 500 respondents
- Wide range of participants
 - Architects and designers
 - Builders
 - Engineers
 - Government
 - Others
- Extensive comments included
- Outputs: Study Report SR453 Usage and uptake of engineered wood products in New Zealand

www.branz.co.nz/pubs/research-reports/sr453/

- What EWPs are being used and for what applications?
- What are potential barriers to increased EWP usage?
- How can EWP update be increased?
- Major themes
 - Cost
 - Availability
 - Regulation
 - Information
 - Education

- Primarily positive responses
- Pros and cons of using EWPs
 - Cost
 - Stability and consistency
 - Reduced waste
 - Increased speed of construction
 - Site alterations
 - Compliance
 - Lack of knowledge
- Durability and treatment options
- Environmental/carbon impacts
- Allowable substitutions
- Comparisons with other materials
- Options for prefabrication

Recommendations

More information, education and tools – design and

performance

- Develop detailed case studies
 - Economics (end to end)
 - Environmental impacts
 - Range of buildings
- Increased cost-effectiveness
- Update standards
 - Acceptable Solutions
 - Verification Methods
- Simplify compliance pathways

BRANZ EWP resources – codes and standards

- NZS 3604:2011 Timber-framed buildings
- Revision initiated
- Acceptable Solution
- NZS 3603:1993 Timber structures standard
- Revision nearly completed
- NZS 3602:2003 *Timber and wood-based* products for use in building and NZS 364:2003 Chemical preservation of round and sawn timber
- Revisions nearly completed
- Acceptable Solutions for durability and treatment
- Production standards
 New Zealand Building Code (E2/AS1 etc.)

BRANZ EWP resources – manufacturer information

EWP manufacturers and fabricators

- Technical literature
 - Span tables
 - Carbon footprint
 - Durability
- Online design software
 - Different levels available

Component manufacturers

- Fastenings and fixings
- Literature and software
- New Zealand-specific information

- Website
- Publications
- Tools and calculators
- Life cycle and carbon evaluation tools
- Research
- MyBRANZ Knowledge
- Appraisals and CodeMark

tudy Report

Usage and uptake of

engineered wood products

in New Zealand

David Carradine

BRANZ website (www.branz.co.nz)

BRANZ publications

- Build magazine
- Study reports
- Research Now (summaries)
- BRANZ bulletins
 - Corrosion (including geothermal)
 - Wall bracing
 - Connections
 - Timber treatment
- Building and design books
 - Multi-storey LTF guide
 - Selecting timber
 - Engineering basis of NZS 3604

MULTI-STOREY
LIGHT TIMBER-FRAMED BUILDINGS
IN NEW ZEALAND - ENGINEERING DESIGN

BRANZ publications

- eLearning modules
 - Timber framing
 - Bracing
- Good Practice Guides
 - Timber cladding
- Evaluation methods
 - Mid-rise cladding (EM7)
 - Structural joints (EM1)
- Technical papers and recommendations
 - P21 evaluation procedure
 - Fire resistance of LTF walls and gusset connections

Usage and uptake of engineered wood products in New Zealand

BRANZ publications

- Building Basics (series)
 - Minimising waste
 - Weathertightness
 - Compliance
- Level Sustainable Building Series
 - Floor coverings
 - Materials
- Previous seminars/webinars
 - Talking timber
 - Bracing
- Good Repair Guides (series)

BRANZ tools and calculators

- BRANZ Maps
 - Wind
 - Earthquake
 - Corrosion
 - Climate
- Lintels and beams calculator
 - Spreadsheet only
 - www.branz.co.nz/lintels-and-beams/
- B-RISK
 - Fire simulation

BRANZ life cycle and carbon evaluation tools

- LCAQuick
 - Life cycle assessment tool
 - Whole-of-life evaluation
 - EPD data
 - Integration with BIM data
 - Training and project support
 - Library of buildings
 - Comparisons
 - Impact factors

BRANZ life cycle and carbon evaluation tools

- BRANZ CO₂NSTRUCT
 - Embodied carbon and energy only
 - EPD data
 - Updated annually
 - Variable data quality

Projects underway

- MACC tool
 - Residential
 - Systems data
- Dashboard tool
 - Comparisons
 - Top five materials
- Early decision-making tool

Return to summary of material classes	Metal – steel						
Material (see notes below table)	Embodied carbon kg CO ₂ eq/kg	Embodied energy (total) MJ (NCV)/kg		0.	Source	Data quality	
Steel, bar (Pacific Steel)	3.97	55.88	50.20	5.68	8.3	A	
Steel, coil (Pacific Steel)	3.75	52.65	47.40	5.25	8.3	A 	
Steel, rod (Pacific Steel)	3.78	53.95	47.70	6.25	8.3	A ••••••••••••••••••••••••••••••••••••	
Steel, wire (Pacific Steel)	3.90	56.23	49.40	6.83	8.3	A	
Steel, structural, columns and beams (BlueScope Steel)	2.85	31.86	31.50	0.36	8.4	A	
Steel, primary (galvanised, both sides, 0.02 mm each, coating class Z275), profile metal sheet, generic all profiles, 0.4 mm BMT	3.74	47.45	42.80	4.65	8.1	G ••••	
Steel, primary (galvanised, coating class 2275), cold rolled profile metal sheet, trough section 56mm deep at 305mm ctrs, 0.75 BMT	3.30	40.96	36.80	4.16	8.1	G ■■■■	

Transition to a Zero-Carbon Built Environment programme

- New Zealand whole-building whole-of-life framework
- Opportunities to contribute
- Website coming
- Resource hub in planning stages
 - One-stop shop
- Eco Design Advisor
 - www.ecodesignadvisor.org.nz

Research programme: <u>www.branz.co.nz/environment-zero-carbon-research/transition/</u>

Building LCA: www.branz.co.nz/buildinglca
BRANZ CO₂NSTRUCT: www.branz.co.nz/co2nstruct
LCAQuick: www.branz.co.nz/lcaquick

LCA case studies: www.branz.co.nz/pubs/case-studies/lcaquick/

Contacts: david.dowdell@branz.co.nz, casimir.macgregor@branz.co.nz

- B-RISK
 - www.branz.co.nz/fire-safety-design/b-risk/
 - Recent enhancement to support fire design of exposed mass timber in enclosures
 - Considers contribution of burning timber surfaces to the fuel load
 - Enclosure fires dependent on ventilation and fuel load – includes growth, fully developed and decay phases of fire
 - Calculates expected depth of charring in the enclosure fire

- Global technical guidelines on the fire safe use of wood in buildings
 - International state-of-the art guidance
 - Information for fire and structural engineers, architects, regulatory authorities
 - Fire resistance, reaction to fire, connections etc.
 - Experts contributing from 10 countries
 - New Zealand main contributors Andy Buchanan (editor, author) and Colleen Wade (author)
 - Planned publication 2022
- Fire-safe densified housing research programme

- Fire-safe use of timber
 - Developing calculation models to predict fire temperatures versus time in mass timber enclosures and depth of char
 - Facilitating fire resistance testing of posttensioned beam column connection with Canterbury University
 - Investigating the impact of various amounts of timber linings on the early fire hazard development

- Combustible façades fire safety
 - Managing external fire spread risk
 - How do different test methods and classification criteria compare?
 - How should the potential external fire spread contributions of typical combustible materials (e.g. timber and EWPs) to external fire spread be controlled?

Characteristic	BS 8414-2	NFPA 285	Implication
Fire size	~ 3 MW	~ 1.3 MW	 1.3 MW is not representative of a ventilation-limited fire for the compartment and opening geometry Not consistent with C/VM2 design fire requirement
Heat exposure	~ 75 kW/m²	~ 40 kW/m²	 Some materials of known fire risk not sufficiently challenged with NFPA 285 40 kW/m² does not meet C/VM2 design fire requirement

- Does timber framing contribute to external fire spread?
 - Large-scale experiments
 - Encapsulation approaches
 - Comparisons to fire behaviour in real buildings

Evaluating lining encapsulation robustness with furnace tests

Large-scale experiments to evaluate encapsulation/timber contributions

Fire behaviour in real buildings

BRANZ materials research

- Structural adhesives
 - 50-year durability requirement
 - Polyurethane-based (PUR) adhesives
 - Ageing regime
 - FTIR spectroscopy
 - Differences in composition
 - Differences in ageing cycles
 - Screening test established
 - Mechanical testing
 - Treatment effects
 - Delamination, shear and fracture energy
 - Conference paper available full results later this year

Highly resistant to hygrothermal degradation

Significant hydrolytic degradation

BRANZ materials research

- Effects of geothermal environments
 - Timber products and fastenings
- Durability within wall cavity and subfloor spaces
 - Catalogue of building environmental profiles
 - Specifications and maintenance
- Structural insulated panels (SIPs) durability, fire and seismic performance
 - Test methods and compliance pathways

Figure 2. Discolouration of untreated and treated wood blocks exposed at a location approximately 5 m away from a fumarole in Scion campus.

BRANZ materials research

- Towards durable timber structures I and II
 - Baseline database moisture dynamics in timber
 - Metal corrosion and dimensional changes
 - Preservative leaching
 - Chemical and structural timber degradation
 - Accelerated testing methods for NZBC compliance
 - Develop modelling systems
 - Verification Methods
 - Whole-building focus
 - www.buildmagazine.org.nz/articles/show/towards-durabletimber-structures
 - www.buildmagazine.org.nz/articles/show/advancingdurable-timber-structures

BRANZ structures research

- Seismic performance of SIPs
 - Quantify and qualify lateral load performance
 - Compliance pathways
- LTF multi-storey guideline
- Seismic design of low-rise and mid-rise hybrid residential buildings
 - Guidance and detailing
 - Podium structures
 - Terraced buildings
 - Hybrid bracing systems
 - Feeds into NZS 3604 revision
- Sloping site foundations
 - Guidance developing and upcoming project

MyBRANZ Knowledge

- Profile creation
- Personalised responses

Appraisals and CodeMark

- List of products and systems
- Specific applications
- Full NZBC consideration
- Technical literature
- Appraisals BRANZ administered
- CodeMark externally audited

BRANZ EWP resources – other publications

- Post-tensioned timber
- Timber concrete composite floors
- Long-span roofs
- Quick-Connect and rivets
- Floor diaphragms
- EWPs and fabrication
- Fire performance
- http://pres-lam.com/
- https://www.ptlnz.com/

New Zealand Timber Design Guide (Andy Buchanan)

 www.timberdesign.org.nz/designaids/timber-design/timber-design-guide-2007/

rburv

Evaluating ductility and overstrength of dowelled CLT hold-down connections (Lisa Ottenhaus, PhD thesis, 2015–2019)

Post-tensioned CLT core-walls for highperformance low-damage lateral load resisting systems (Justin Brown, PhD thesis, 2017–2021)

Images provided by Minghao Li

BRB-braced glulam frames to improve performance of conventionally braced heavy timber frames (Wenchen Dong, PhD thesis, 2017–2021)

Images provided by Minghao Li

High-capacity mixed-angle screwed connections in CLT

- Combining 45° and 90° screws high initial stiffness and displacement capacity
- Repaired screwed connections with epoxy

Images provided by Thomas Wright

Coupled CLT walls using steel beams

Recent publications

- Brown, J., Li, M., Tannert, T. & Moroder, D. (2020). Experimental study on orthogonal joints in cross-laminated timber with self-tapping screws installed with mixed angles. *Engineering Structures*, 228, 11560. DOI: 10.1016/j.engstruct.2020.111560.
- Brown, J., Li, M., Palermo, A., Sarti, F. & Pampanin, S. (2020). Experimental testing of a low-damage post-tensioned C-shaped CLT core-wall. *ASCE Journal of Structural Engineering*, 147(3). DOI: 10.1061/(ASCE)ST.1943-541X.0002926.
- Brown, J. & Li, M. (2020). Structural performance of dowelled cross-laminated timber hold-down connections with increased row spacing and end distance. *Construction and Building Materials*, 271, 121595.
- Brown, J., Li, M., Karalus, B. & Stanton, S. (2020). Withdrawal behavior of self-tapping screws in New Zealand Douglas-fir CLT. *New Zealand Timber Design Journal*, 28(2), 25-32.
- Dong, W., Li, M., He, M. & Li, Z. (2021). Experimental testing and analytical modelling of glulam moment connections with self-drilling dowels. *ASCE Journal of Structural Engineering*. (In Press).
- Dong, W., Li, M., Lee, C-L., MacRae, G. & Abu, A. (2020). Experimental testing of full-scale glulam frames with buckling restrained braces. *Engineering Structures*, 222, 111081.

Recent publications

- Dong W., Li, M., Ottenhaus, L. & Lim, H. (2020). Ductility and overstrength of nailed hold-downs in CLT. *Engineering Structures*, 215, 110667.
- Ottenhaus, L., Li, M. & Smith, T. (2020). Analytical derivation and experimental verification of overstrength factors of dowel-type timber connections for capacity design. *Journal of Earthquake Engineering*. DOI: 10.1080/13632469.2020.1781711.
- Ottenhaus, L., Li, M. & Smith, T. (2018). Structural performance of large-scale dowelled CLT connections under monotonic and cyclic loading. *Engineering Structures*, 176, 41-48.
- Ottenhaus, L., Li, M., Smith, T. & Quenneville, P. (2018). Mode cross-over and ductility of dowelled LVL and CLT connections under monotonic and cyclic loading. *Journal of Structural Engineering*, 144(7), 04018074.
- Ottenhaus, L. & Li, M. (2018). Embedment strength of New Zealand cross laminated timber. New Zealand Timber Design Journal, 26(1), 12-16.
- Ottenhaus, L., Li, M., Smith, T. & Quenneville, P. (2018). Overstrength of dowelled CLT connections under monotonic and cyclic loading. *Bulletin of Earthquake Engineering*, 16(2), 753-773.

BRANZ EWP resources – University of Auckland

- CLT floors
- Seismic dampers for timber lateral load resisting systems (LLRS)
 - Connections to CLT walls
 - Numerical analysis
 - Ductility flag-shaped hysteresis

BRANZ EWP resources – AUT

- Resilient slip friction joints (RSFJ)
- Used with LVL, glulam, CLT, etc.
- Multi-storey applications
- Collaboration with others
 - University of Auckland
 - EQC
 - MBIE
 - Tectonus
- Fully functional buildings following 2500-year event

Resilient Slip Friction Joint

BRANZ EWP resources – other organisations

- New Zealand Timber Design Society (TDS)
 - www.timberdesign.org.nz
 - Technical literature
 - Website and journal
 - Calculators
 - Worked examples
- Wood Processors and Manufacturers Association of New Zealand (WPMA)
 - Series of timber design guides (NZ Wood) www.wpma.org.nz/timber-design-guides.html
 - New Zealand EPD
 <u>www.epd-australasia.com/epd/solid-finger-jointed-and-laminated-timber-products-including-timber-preservation-options</u>

- WoodWorks NZ
- Scion
 - Durability
 - Processing
 - Sustainability
 - Innovation in timber
- **Engineering New Zealand**
 - Technical groups
 - SESOC, NZSEE, General Practitioners Group

Images provided by Ged Finch

BRANZ EWP resources – other organisations

- Wood Solutions (Australia)
 - www.woodsolutions.com.au
 - Design guides
 - Webinars/podcasts
 - Design assistance
- Think Wood and WoodWorks (North America)
 - www.thinkwood.com
 - www.woodworks.org
- Canadian Wood Council (Canada)
 - www.cwc.ca
- TRADA (UK)
 - www.trada.co.uk

BRANZ Summary and moving forward

- Areas for improvement
- Abundance of resources
- What else is needed?
- Follow-up survey?
- Maybe a centre ...

Ministry for Primary Industries – Timber Design Centre

- Current call for registrations of interest
- Timber advisory service
- Accelerate use of low carbon products in buildings
- Knowledge dissemination
- Mid-rise, mass timber, off-site construction etc.
- Increase use of timber in domestic construction

Thank you

David.Carradine@branz.co.nz