

The Carbon Challenge -Science and solutions Live webinar series

Webinar 3

Upcoming webinars

Webinar 4 Wednesday 30 March 12–1

• Design and build a low-carbon dwelling

About us

David Dowdell

Greg Burn

the paint the professionals use

Questions

There will be a separate question and answer session from 1.30–2.30pm following this webinar

Programme

Carbon challenges

Webinar content

- Research/modelling/science based
- Primary focus on volume residential
- Continually evolving situation
- Realism carbon emissions reduction represents a challenge to the industry
- We have left it really late we need to act now!!

Carbon challenges

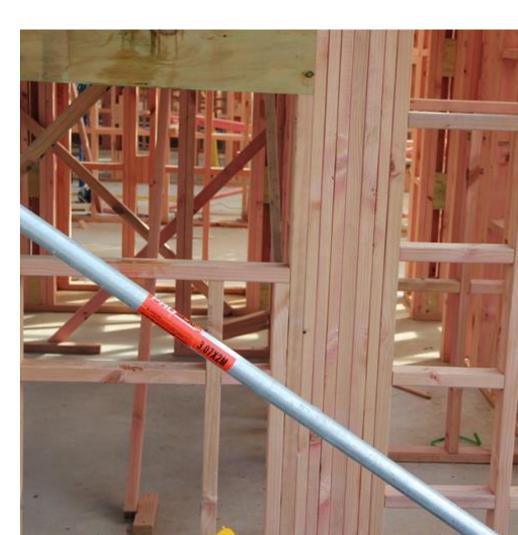
Climate change mitigation and adaptation

Mitigation – impact that buildings have on climate change

Adaptation – impact that climate change has on buildings

Overheating Flooding Sea-level rise Extreme weather events

Embodied and operational carbon emissions


Embodied carbon emissions:

- Can largely occur before owners occupy the house
- Design/specification influenced

Operational carbon emissions:

- Occur progressively over time
- Design/specification/occupier influenced

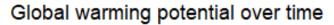
Focus has been on energy efficiency Don't ignore embodied emissions!

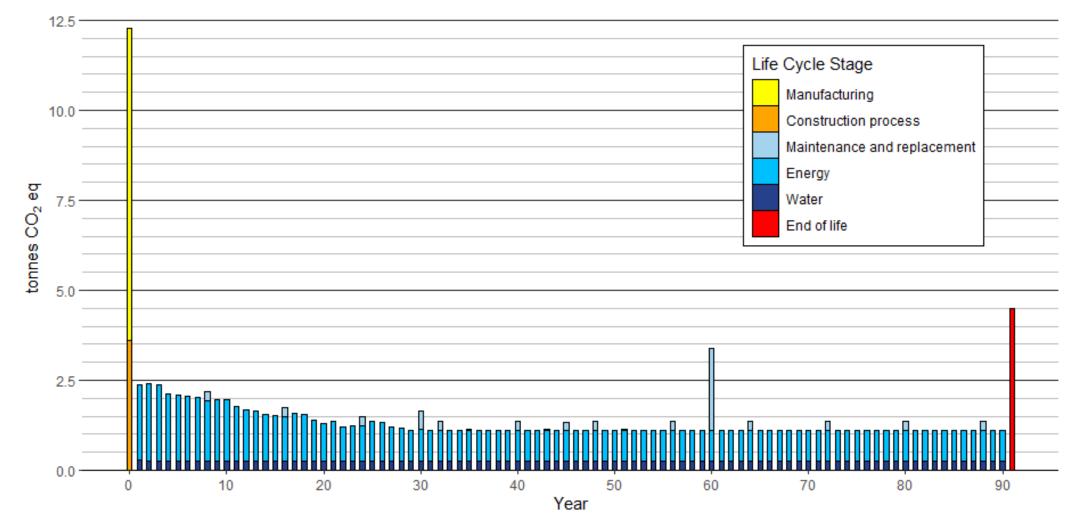
Whole-of-life embodied carbon emissions:

- New build efficiency upgrade/repurpose existing buildings, reduce new building sizes
- Material efficiency material efficient design, reducing waste
- Carbon intensity lower embodied carbon materials

Operational emissions:

- Energy demand
- Reticulated water demand
- (Occupancy)


Understanding Carbon


Embodied Carbon Manufacture, transport and installation of construction materials Operational Carbon Building energy consumption

Timing of greenhouse gas emissions

Standalone house, 194m²

Need a carbon footprint tool ...

... to calculate whole-of life embodied and operational carbon emissions

Tools should be:

- Easily understood and easy to use
- Common across the industry
- Consistent (scope, methodology, assumptions)
- Thorough
- Use the same data sources/defaults
- Low cost/free

Ideally, cover a range of performance requirements

Currently, no tool meets all these criteria

Carbon footprinting is data intensive

We don't have perfect data – but can't afford to wait!

Data must be:

- Comprehensive (cover the full life cycle)
- Accessible/transparent
- Able to be used to compare designs
- New Zealand relevant
- Current/regularly updated

Environmental product declarations (EPDs)

Robust, scientifically-based, third-party verified declarations of environmental performance of construction materials

Produced by construction product manufacturers in accordance with international standards and based on LCA

EPDs provide a valuable source of data that can feed directly into building LCA

EPD Australasia www.epd-australasia.com

Please ask for them!

Generic data

Where EPD data is not available, we use generic data (EcoInvent)

"New Zealandise" the data – e.g. add NZ grid electricity to process data

Useful for stages of the life cycle beyond materials manufacture:

- Transport by truck/ship
- End-of-life processing/disposal

As more EPD data becomes available, can use to replace or supplement generic data

Estimate of material quantities

Residential – CO₂RE and HECC require m² of elements (Webinar 2) Otherwise, embodied carbon footprint/LCA tools require material quantities:

- BIM
- Schedule of quantities

Need to ensure quantities are:

- Comprehensive
- Accurate

ase select group of parameters	▼ Save A	As Save I	Rename Delete				E Ref	fresh Para	ameters by Formulas 👘 📄 Scheduling Co
ynamic Section Box									
Project Name ⊕1 Level	Level	Department	Name	Room Number	Area	Perimeter	Unbounded Height		Create\Update Schedule Insert Elements by Related Objects
	2 Level	A21	Living Room	2.54	16.16 m ²	16390	2650		Show Rooms Data Show Selected Elements Change Value Delete Selected Elements Rename Type Name By Configuration Change Type Replace Element Replace Element Write Flip/Mirror Orientation Calculate Elevations Calculate Coordinates X;Y Copy Host Element Mark Sort Mark
	2 Level	A21	Lobby	2.45	9.12 m ²	16830	2650		
	2 Level	A21	Bedroom	2.46	16.89 m ²	16590	2650	-	
	2 Level	A21	WC with Shower	2.47	4.83 m ²	8960	2650	-	
	2 Level	A21	Balcony	2.50	6.47 m ²	12042	2650		
	2 Level	A21	Kitchen	2.55	6.19 m ²	10300	2650		
	2 Level	A22	Lobby	2.51	10.67 m ²	17636	2650		
	2 Level	A22	Bedroom	2.56	9.11 m ²	12080	2650		
	2 Level	A22	WC with Shower	2.48	4.76 m ²	8880	2650		
	2 Level	A22	Living Room	2.52	13.41 m ²	16480	2650		
	2 Level	A22	Balcony	2.53	7.34 m ²	11480	3400		
	2 Level	A22	Kitchen	2.49	8.02 m ²	12527	2650		
	2 Level	A23	WC with Shower	2.44	4.91 m ²	8960	2650		
	2 Level	A23	Bedroom	2.43	12.38 m ²	14100	2650		
	2 Level	A23	Lobby	2.42	4.47 m ²	9160	2650		Copy Value
	2 Level	A23	Living Room	2.37	15.11 m ²	16200	2650		Copy Value From Host Copy Value From Room Copy Value From Space
	2 Level	A23	Balcony	2.38	6.88 m²	10960	3400		
	2 Level	A23	Kitchen	2.39	5.99 m²	10040	2650		
	2 Level	A24	Living Room	2.33	20.58 m ²	21100	2650		Calculate Value
	2 Level	A24	Bathroom	2.31	6.58 m ²	10260	2650	-	Write Current Date

Material performance

Low-carbon building materials/components that are:

- Fit for purpose
- Durable
- Cost-effective/comparable
- Low-waste/recyclable
- Readily available

Cost comparable lower-carbon materials

Managing costs related to:

- Increased R-value envelope insulation/exterior joinery
- Heating/cooling/ventilation requirements for IEQ
- Water harvesting/storage
- Ensure extra cost improves performance *and* reduces emissions



Striking a balance

To reduce operational emissions, houses must become more energy efficient

This means:

- Smaller/simpler floor plans
- Lower glazing ratios
- Higher construction R-values
- Being more airtight
- Reduced thermal bridging

Energy-efficient houses must also have good IEQ

This means:

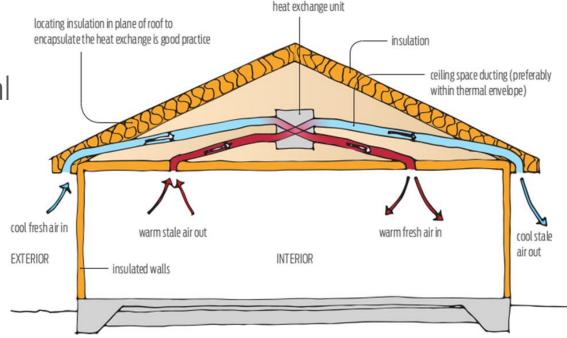
- Heating and cooling for comfortable year round internal temperatures
- Being well ventilated with sufficient air changes and managed humidity
- Considering thermal mass

BRANZ suggested build target of 3 air changes per hour (ach) maximum at 50 pascals (3 ach @ 50 Pa is a test pressure – equates to 0.15 ach actual)

Most current new builds easily measure 5 ach @ 50 Pa

Increased airtightness:

- Reduces infiltration heat loss/gain
- Improves ability to maintain comfortable internal temperature and IEQ when mechanical ventilation/heating/cooling is incorporated



A healthy indoor environment requires 0.35–0.5 ach actual

Increased envelope airtightness (0.15 ach actual) requires an effective whole-house mechanical ventilation system (to supplement natural ventilation) to ensure that the home is not underventilated

Ventilation system should incorporate heating *and* cooling of replacement air

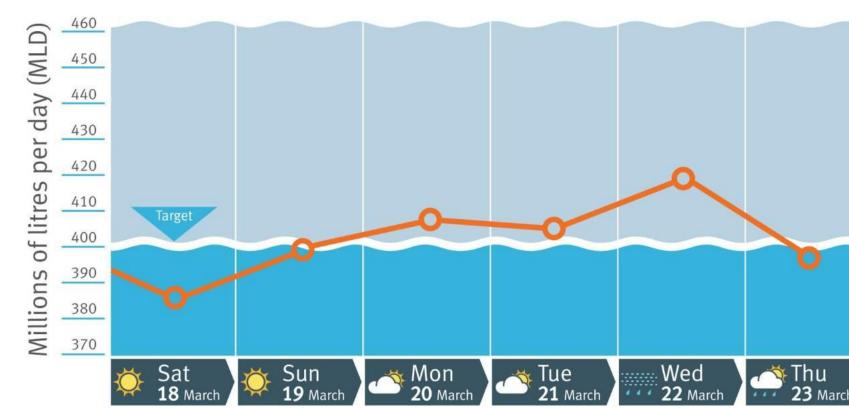
Embodied/operational carbon cost of mechanical ventilation needs consideration

Mechanical ventilation means heat losses from ventilation are more predictable and can be factored in to modelling

Whole-house mechanical ventilation including heat recovery is efficient Heat recovery ventilation is *even more efficient* in airtight, highly insulated houses

Mechanical ventilation system considerations:

- Coefficient of performance (COP)
- Energy efficiency ratio (EER)


Changing occupant behaviour

Effectively manage heating/cooling/ventilation (IEQ)

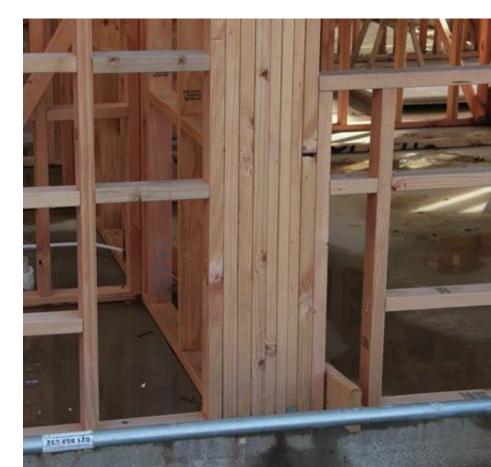
Reduce the use of:

- Grid-supplied energy
- Reticulated water

Auckland's total water use

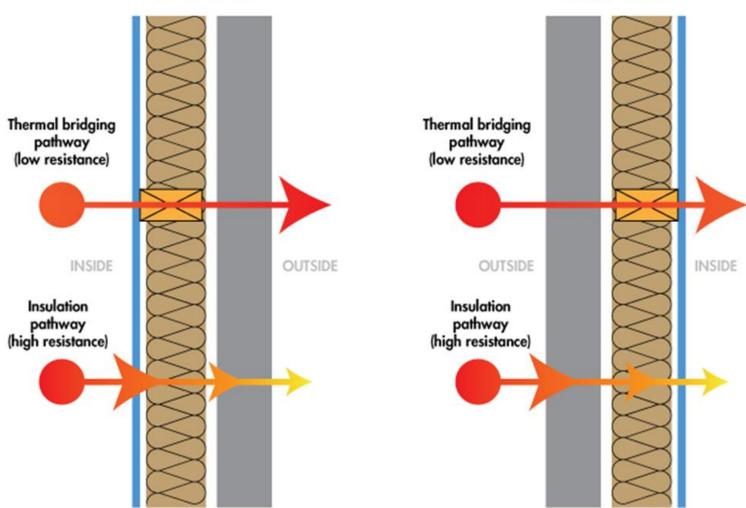
Exterior wall framing ratio

Beacon/BRANZ research identified substantially more framing in timber-framed exterior walls than expected


Higher framing ratio = more thermal bridges = more heat loss/gain

14–18% presumed for H1 *Energy efficiency*

Average from research 34% (24 –57% range)


Up to 100% in short wall frames

Thermal bridging

Major area of heat loss/gain through exterior wall framing

Heat Gain

Heat Loss

Thermal bridging

Other issues:

- Structural steel exterior wall brace frames
- Cavity battens often replicate wall framing (complete thermal bridge)
- Too many exterior wall nogs/dwangs
- Concrete slab perimeter edge

Insulation issues

Beacon/BRANZ research also identified:

- Uninsulated exterior wall area as high as 3%
- No insulation in corners or where internal walls
 meet external walls
- Mid-floor framing and lintels form a completely uninsulated band
- Uninsulated (unsealed) gap at bottom plates (due to plastic packers)

Site and subdivision

Site sizes Orientation

- Density combinations
- Roading
- Shading
- Consideration of passive design principles

Need to do intensification well

Often difficult to achieve suitable dwelling/glazing orientation due to:

- Site orientation (yield, roading, site sizes)
- End elevations only to internal units
- One dominant elevation to end units
- Impact of adjacent buildings

Consider energy modelling

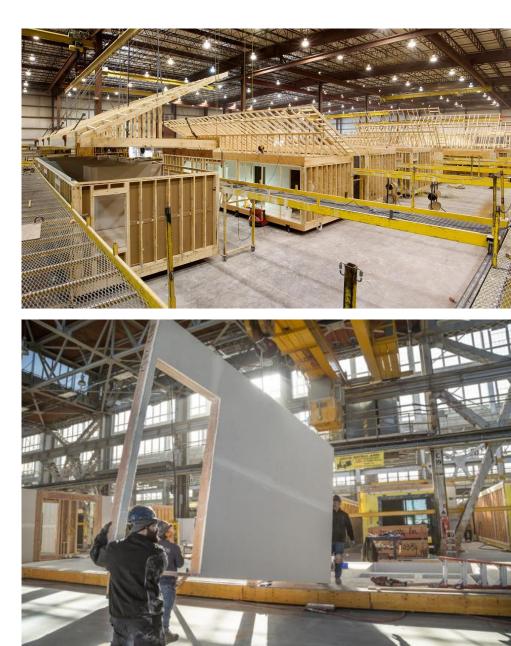
Changing current practices

Design:

- Poor orientation/overglazing
- Complexity
- Minimum compliance only
- Lack of innovation

Construction:

- Poor insulation installation
- Material waste



Reduce:

- Dwelling size
- Design complexity
- Material range

Consider:

- Modular design
- Factory build/prefabricated components

Reuse and recycle building materials

High-quality, durable demolition materials going to waste

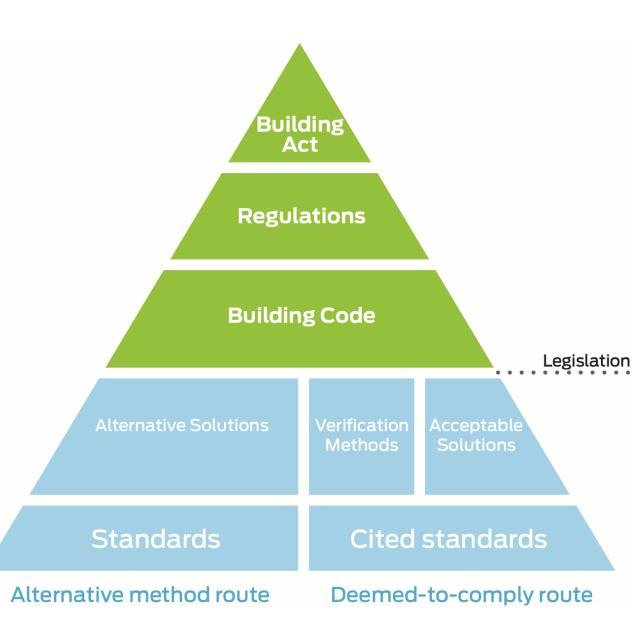
Embodied carbon already emitted

Compliance issues

Repurpose existing buildings

Can result in reduced:

- Quantities of new materials
- Build costs
- Land use
- New infrastructure
- Waste to landfill
- Embodied carbon emissions



Alternative Solutions

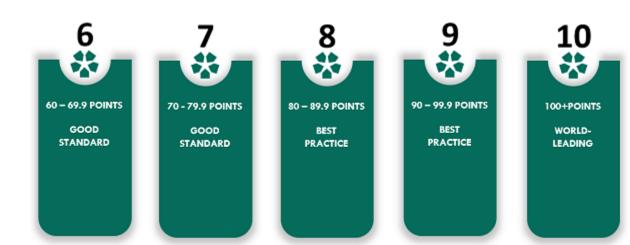
Performance-based Building Code Acceptable Solutions non-mandatory

Opportunity for innovation Challenge the norm

Think carbon – but don't let it overrule

Key messages

Key messages


- Wide range of relevant challenges (opportunities)
- Imperfect information and data gaps but can't afford to wait
- Need to change some current practices (now)

Key organisations

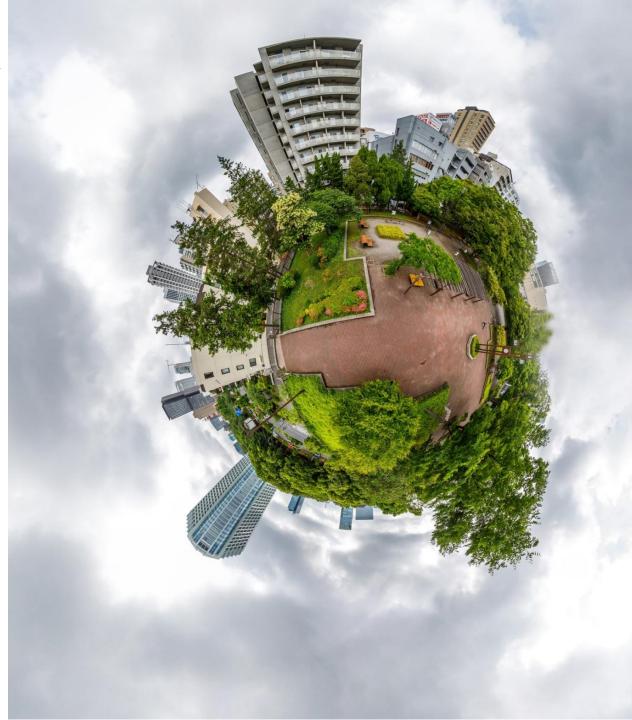
A number of organisations are focused on improving building performance:

- NZGBC
- Passive House Institute New Zealand
- Eco Design Advisors
- SUPERHOME movement
- Lifemark
- Beacon Pathway
- BRANZ

Useful links

BRANZ zero-carbon built environment research programme www.branz.co.nz/environment-zero-carbon-research/transition/

Building LCA www.branz.co.nz/buildinglca


CO2NSTRUCT www.branz.co.nz/co2nstruct

LCAQuick: www.branz.co.nz/lcaquick

Building LCA case studies www.branz.co.nz/pubs/case-studies/lcaquick/

Datasheets <u>www.branz.co.nz/buildinglca</u> (and select 'Data')

Contact: <u>david.dowdell@branz.co.nz</u>

the paint the professionals use

Upcoming webinars

Webinar 4 Wednesday 30 March 12–1

• Design and build a low-carbon dwelling

Thanks

We really appreciate the effort you have made to attend

