

The Carbon Challenge -Science and solutions Live webinar series

Webinar

Webinar 4

Final in a series of four webinars

About us

David Dowdell

Greg Burn

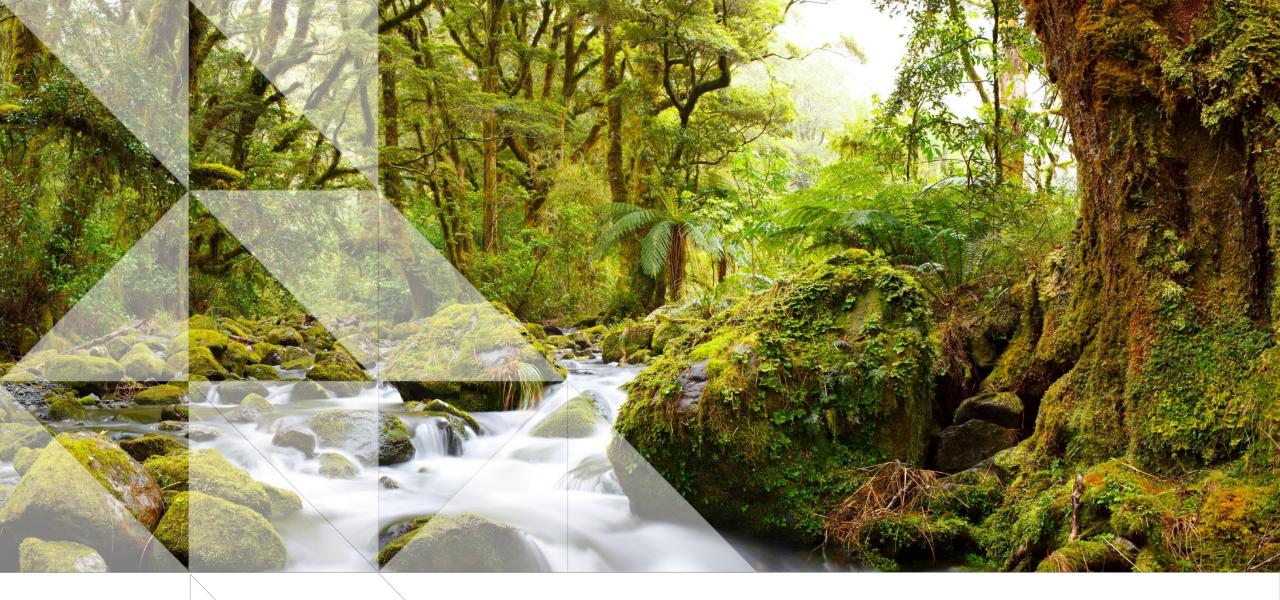
the paint the professionals use

Questions

There will be a separate question and answer session from 1.30–2.30pm following this webinar

Programme

• Design and build a low-carbon dwelling



Webinar content

- Research/modelling/science based
- Primary focus on volume residential
- Continually evolving situation
- Realism carbon emissions reduction represents a challenge to the industry
- We have left it really late we need to act now!!

Design and build a low-carbon dwelling

Seeking the answer to:

- What 'rules of thumb', if followed in design, can help to lower the carbon footprint of our houses?
- What magnitude of carbon reduction could be expected compared to business-as-usual?

Intended as a starting point Not exhaustive – there are other opportunities to reduce carbon

No substitute for assessing specific designs through the design/build process (and post occupancy) in a specific location

Focus on stand-alone housing

Scope includes embodied and operational carbon emissions

- Variables assessed:
- Construction R-values
- Ground floor construction
- House shape (area/perimeter ratio)
- Window to wall ratio
- House orientation and distribution of windows
- House size

Method

Using a simple box model to represent a house:

- 1. Change value of each strategy within a specified range e.g. shape = area/perimeter ratio = 2.1 to 3.1
- 2. Calculate the building carbon footprint based on:
 - Whole-of-life embodied carbon
 - Operational carbon from heating
 - Operational carbon from cooling
 - Plug loads and hot water
- 3. Determine range of resulting carbon footprints for each strategy to determine 'rule of thumb' optimums
- 4. Cumulatively apply these optimums to a simplified reference house
- 5. Calculate total carbon reduction compared to the reference house

Excludes: water use

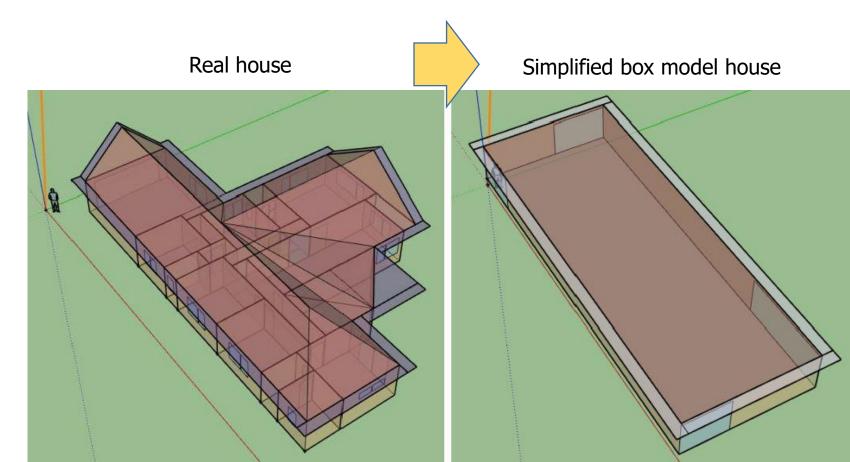
Future climate

- 2050 climate files
- Expect lower heating requirement, higher cooling requirement

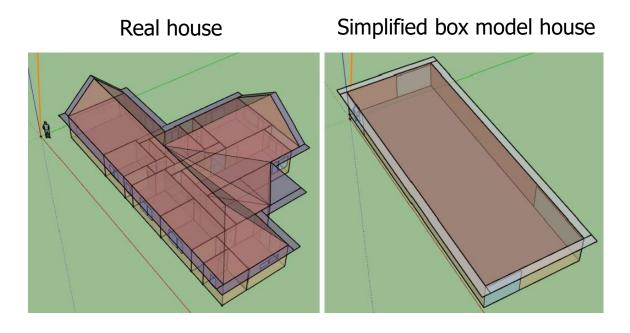
Relaxed heating/cooling schedules

- Minimum temperature 18°C but maximum increased to 27°C
- Active heating/cooling only from 7am to 11pm
- Expect lower heating and cooling requirement

Reference house


Real house:

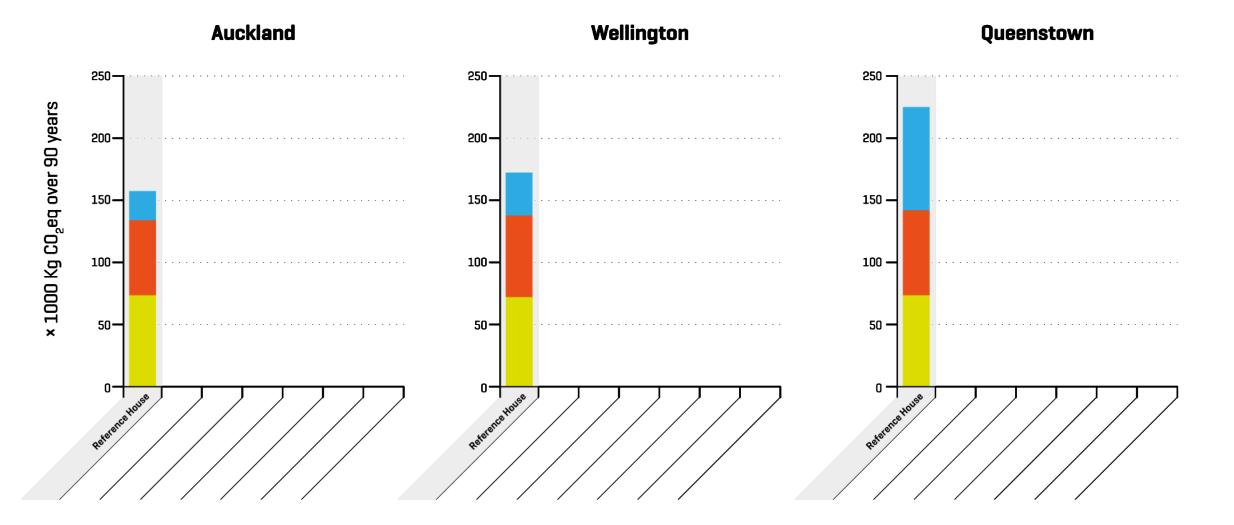
- 156 m² gross floor area (excluding garage)
- 4 bedrooms
- 2 bathrooms
- WWR 25%
- Carpeted floor slab
- Assume 34% framing ratio
- Simplified box model house:
- Same area
- Same WWR
- 0.36 ach
- 5 occupants



Baseline assumption for a warm, dry, healthy home:

- Indoor temperature maintained at 18–25°C 24/7
- Not how houses are typically operated currently!
- Means simulated energy use is higher

Simulated energy use comparison



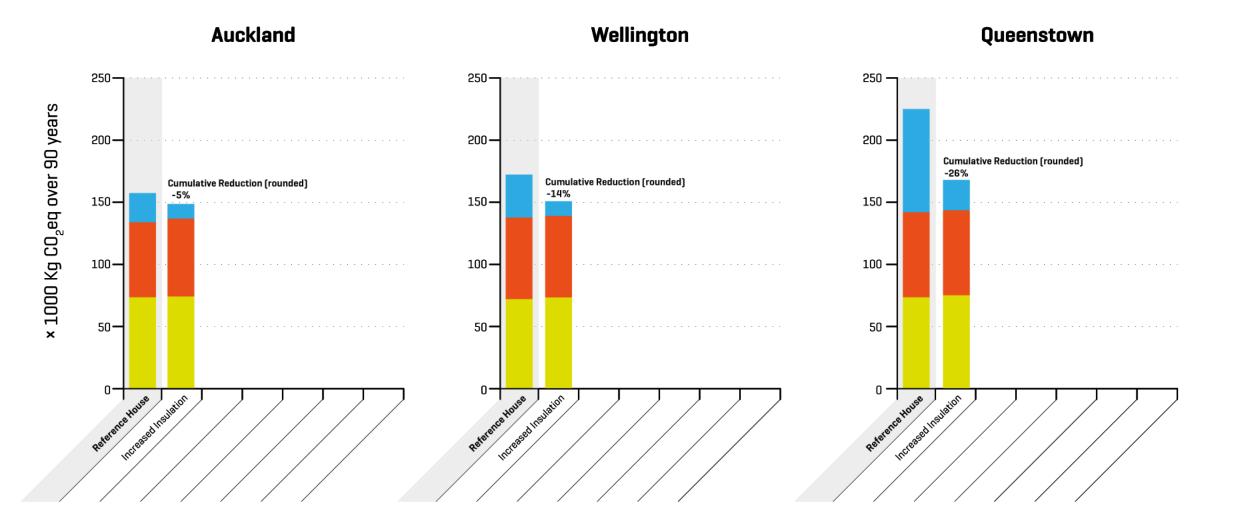
Simulated energy use (excluding hot water):

Climate zone	% difference
1	4
2	6
3	12
4	9
5	8
6	11

Reference house

Optimisation strategy 1: Increase construction R-values – summary

	Climate zone						
Building element	1	2	3	4	5	6	
Roof	R5.0	R5.4	R6.0	R6.6	R7.0	R7.4	
Walls	R2.4	R2.6	R2.8	R3.2	R3.5	R3.8	
Floor (slab on ground)	R1.9	R2.2	R2.5	R2.8	R3.2	R3.6	
Windows	R0.39	R0.42	R0.45	R0.49	R0.55	R0.62	

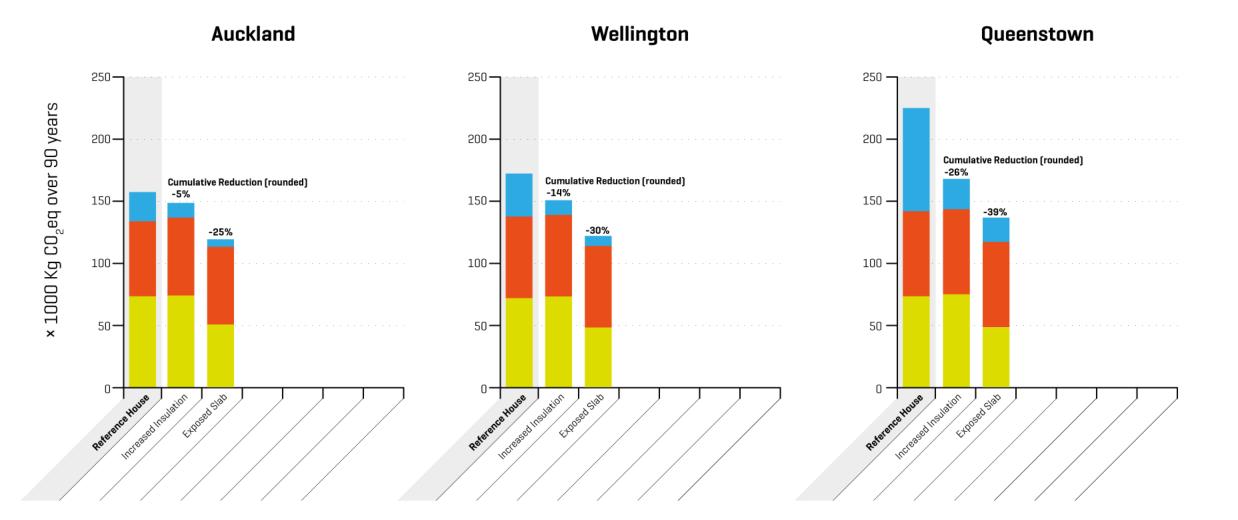

Building element	Construction R-values (m²·K/W) ⁽¹⁾						
	Climate zone 1	Climate zone 2	Climate zone 3	Climate zone 4	Climate zone 5	Climate zone 6	
Roof ⁽²⁾	R6.6	R6.6	R6.6	R6.6	R6.6	R6.6	
Wall	R2.0	R2.0	R2.0	R2.0	R2.0	R2.0	
Floor							
<i>Slab-on-</i> ground floors	R1.5	R1.5	R1.5	R1.5	R1.6	R1.7	
Floors other than <i>slab-on-</i> ground	R2.5	R2.5	R2.5	R2.8	R3.0	R3.0	
Windows and doors ⁽³⁾	R0.46 ⁽³⁾	R0.46 ⁽³⁾	R0.46	R0.46	R0.50	R0.50	
Skylights	R0.46	R0.46	R0.54	R0.54	R0.62	R0.62	

H1/AS1

MODEL

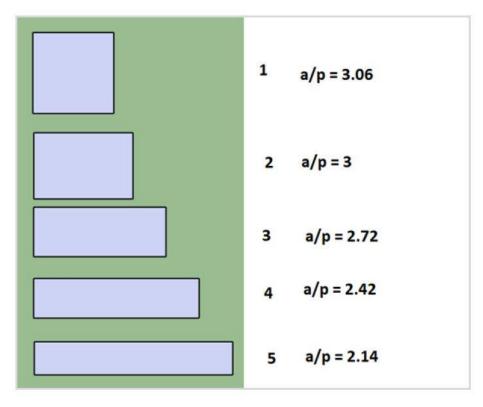
Optimisation strategy 1: Increase construction R-values

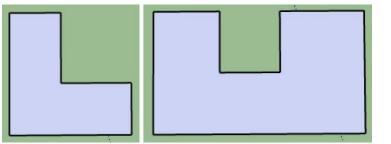
Key
Whole-of-life Embodied Carbon
Hot Water and Plug Load
Cool/Heating


Expose the concrete slab floor

Magnitude of carbon reduction depends on:

- Type of floor covering (we have assumed carpet throughout)
- Carbon footprint of floor covering (varies considerably)
- Frequency of carpet replacement (we have assumed every 12 years) Broader issues relating to materials selection:
- Is a product or material really necessary?
- Does installation create much waste?
- How durable/resilient is it?
- How easy is it to maintain?
- Can it be reused from somewhere else?
- Can it be made with more recycled content?
- How easy is it to reuse/recycle at its end of life?

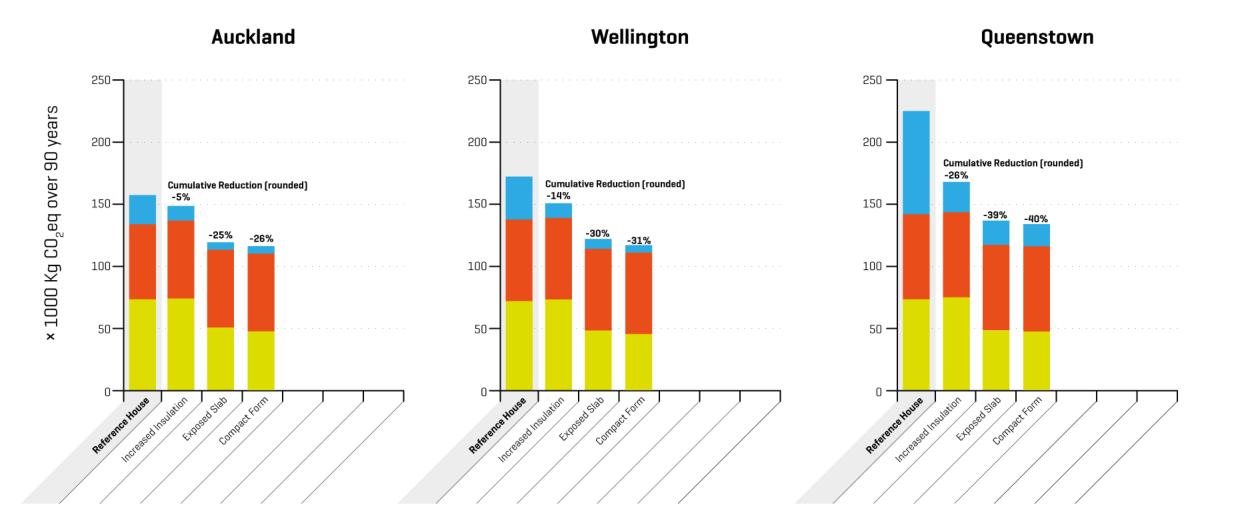

Optimisation strategy 2: Exposed floor



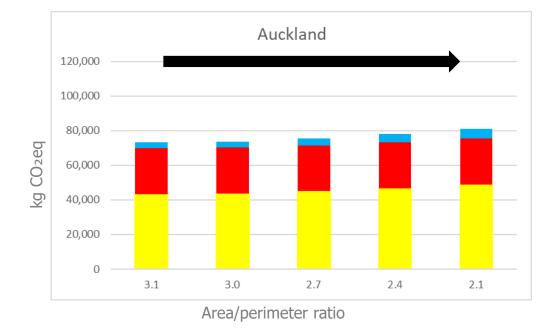
Key
Whole-of-life Embodied Carbon Hot Water and Plug Load Cool/Heating

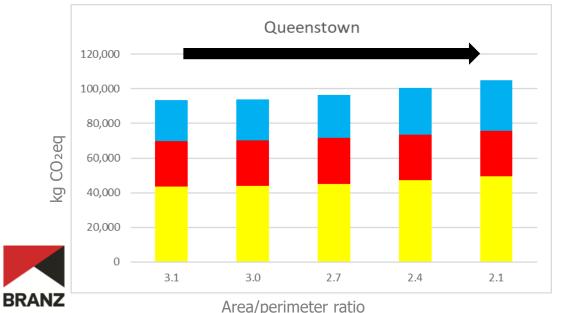
Optimisation strategy 3: More compact plan form

Higher area/perimeter ratio = more compact form


L shape $a/p \sim 2.5$ U shape $a/p \sim 2.3$

More complex house shapes mean:


- Less compact = greater external envelope area = greater heat loss and more material use
- Need for more corner junctions = thermal bridging
- Potential for alcoves where windows may be shaded by other parts of a house (not assessed here)



Optimisation strategy 3: More compact plan form

Optimisation strategy 3: More compact plan form

Shifting from a more compact square form (A/P = 3.1) to an elongated form (A/P = 2.1) results in:

- 11–12% increase in climate change impact
- Increases in embodied and operational carbon

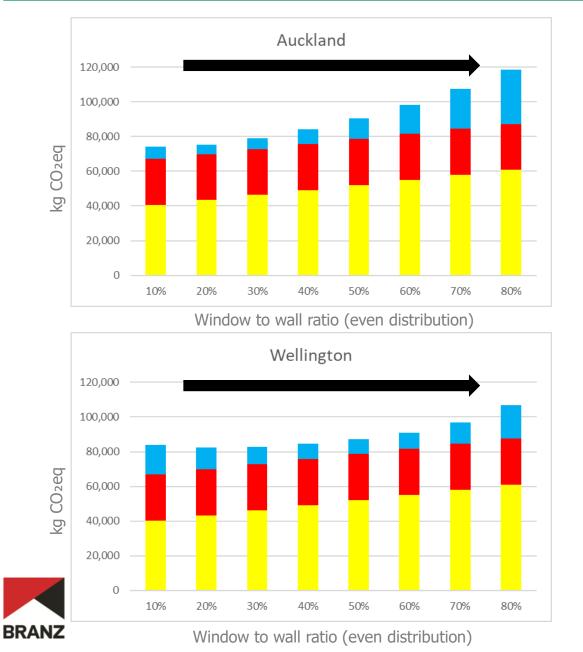
Cooling/heating

Whole-of-life embodied carbon

Optimisation strategy 4: Window to wall ratio (WWR)


- Complex different factors having confounding affects including:
- Trade-offs between heating and cooling

Depends on:


- Location
- Occupants' perception of internal comfort

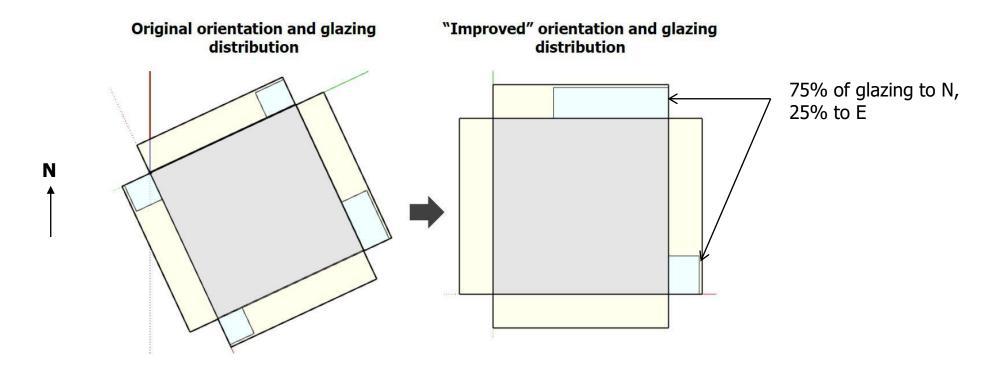
Aiming for a WWR of 15–25% appears reasonable

Optimisation strategy 4: Window to wall ratio (WWR)

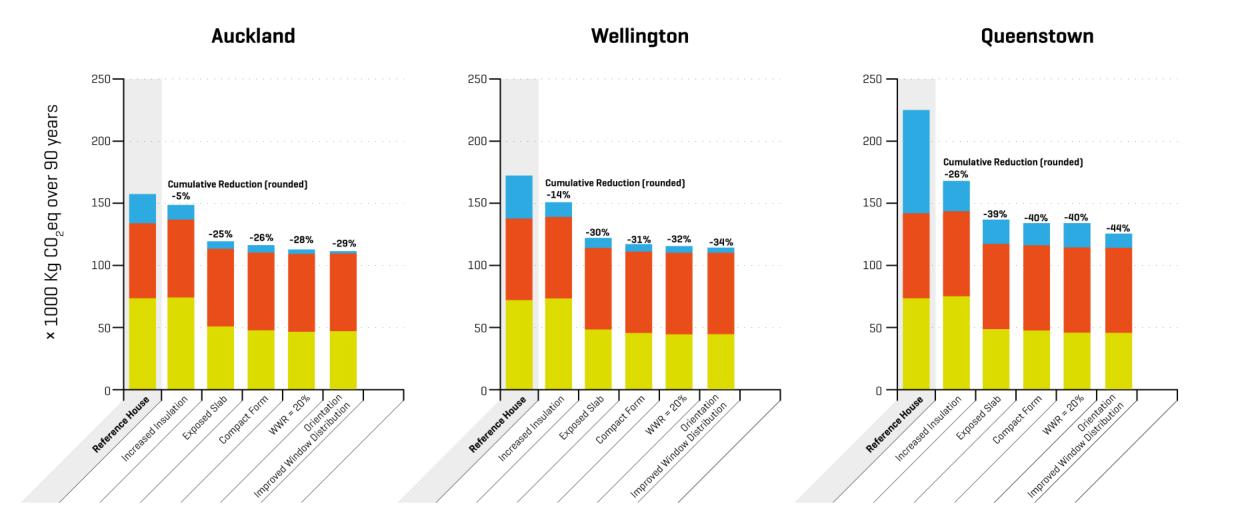
Increasing the WWR from 20% to 80% (even distribution of windows) results in:

- Auckland: 57% increase in climate change impact
- Wellington: 30% increase in climate change impact
- Increase in embodied carbon
- Operational carbon varies with location

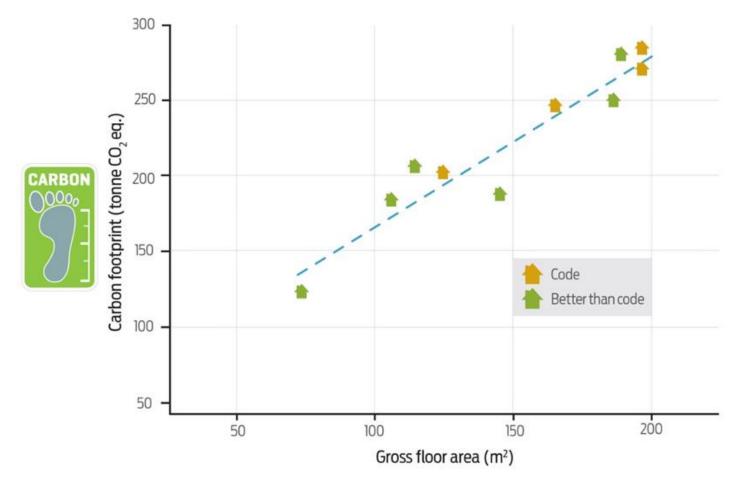
Cooling/heating



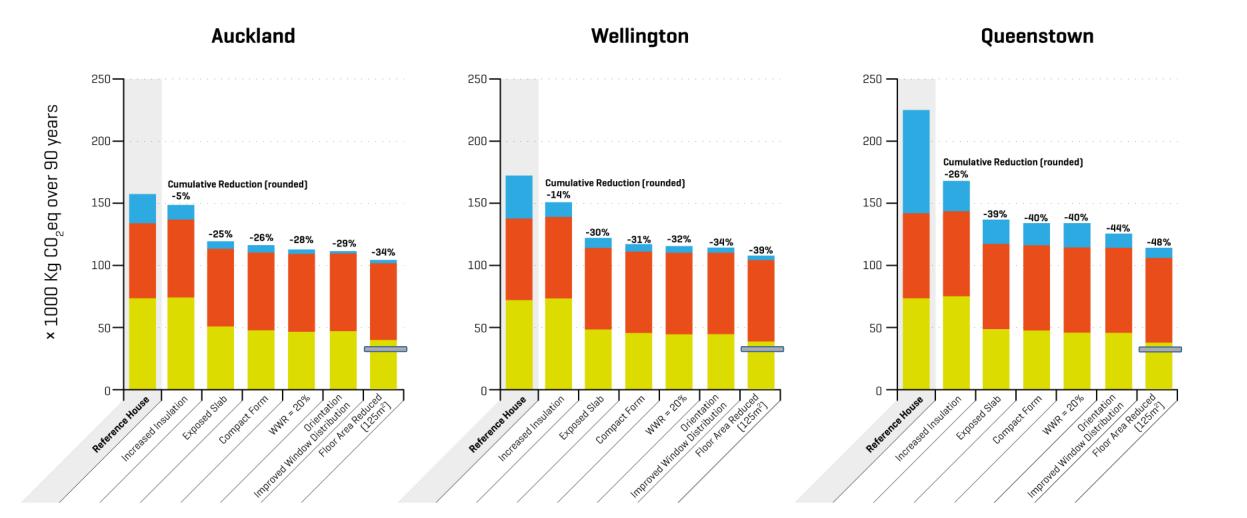
Whole-of-life embodied carbon


Optimisation strategy 5: Improved orientation and window distribution

Also complex – different factors have confounding affects WWR set at 20% Higher WWR = greater potential effects if not optimised Floor type – exposed concrete floor slab Active heating vs active cooling



Optimisation strategy 5: Improved orientation and window distribution


Bigger house = greater area to heat/cool and more materials

- Average house in 1960s was 128 m², in 2010 it was 205 m² (Source: QV)
- Larger houses have larger carbon footprints (also true of high-performance houses)
- Occupancy also important

Optimisation strategy 6: Reduce house size (125 m²)

Key

From this analysis, employing 6 'rule of thumb' strategies has the potential to reduce carbon (relative to BAU) by:

- 34% (Auckland) (32 tonnes CO₂eq embodied, 20 tonnes CO₂eq operational = **52 tonnes CO₂eq saving**)
- 39% (Wellington) (33 tonnes CO₂eq embodied, 34 tonnes CO₂eq operational = **67 tonnes CO₂eq saving**)
- 48% (Queenstown) (33 tonnes CO₂eq embodied, 74 tonnes CO₂eq operational = **107 tonnes CO**₂eq saving)

Strategies are:

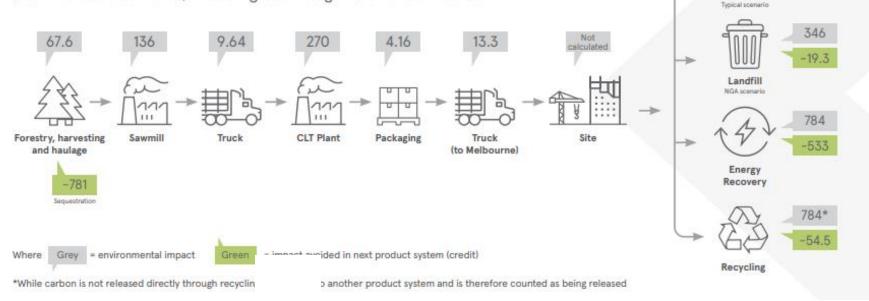
- Increase construction R-values
- Expose the concrete floor slab
- Compact form
- WWR ~15-25%
- Ideally, orient north and consider glazing distribution we used 75% N, 25% E
- Reduce house size we used 125 m² for 5 occupants

No substitute for assessing a specific design in a specific place through the design (and build) process

Same 6 'rule of thumb' strategies have the potential to reduce carbon (relative to BAU) by:

- Auckland: 38 tonnes CO₂eq embodied, 9 tonnes CO₂eq operational = **47 tonnes CO₂eq saving**
- Wellington: 38 tonnes CO₂eq embodied, 26 tonnes CO₂eq operational = **64 tonnes CO₂eq saving**
- Queenstown: 39 tonnes CO₂eq embodied, 61 tonnes CO₂eq operational = **100 tonnes CO₂eq saving**
- More sensitive to WWR and orientation/window distribution lower WWR and less glazing to N and W in warmer climate zones better to reduce overheating risk
- Overall, similar magnitude of carbon savings (greater earlier savings, smaller ongoing savings)
- Sourcing timber/engineered woods from sustainable forestry reduces overall calculated carbon footprint (due to incorporation of biogenic carbon sequestration

A mention about biogenic carbon


Environmental Product Declaration XLam CLT Panel

Programme Operator: EPD Australasia Limit Version 1st February 2021 Valid until 1st February 2026 Scope: Australia

Life Cycle of XLam CLT Panels

Life cycle carbon footprint in kg CO₂- equivalent per m³ XLam CLT panels (13% moisture content), including both biogenic and fossil carbon.

Carbon neutrality can be assumed for:

 Products certified under an established certification scheme for sustainable forest management (FSC or PEFC)

57.3

-0.193

Landfill

Warmed climate (2050) – we found:

- Heating down, cooling up (as expected)
- May want to consider WWR at the lower end of 15–25% suggested range (particularly for warmer climate zones)
- Overall, suggested strategies remained valid

Relaxed heating/cooling schedules – we found:

- Significant reduction in heating and cooling energy (as expected)
- Moderating benefit of thermal mass of exposed concrete floor slab reduced
- Lower requirement for cooling means WWR may trend towards upper end of 15–25% without too much penalty – less cooling needed due to tolerance for higher indoor temperature (27°C vs 25°C)
- Otherwise, suggested strategies remained valid

Option 1: CO2NSTRUCT

- Can use to compare climate change impacts from manufacture of alternative materials.
- Be aware that alternatives may require different quantities to fulfil the same function in a building

Carpeting									
Go to summary of material classes	Material		Embodied carbon (kg CO2eq/qty)	Embodied energy (total) (MJ (NCV)/qty)	Embodied energy (non-renewable) (MJ (NCV)/qty)	Embodied energy (renewable) (MJ (NCV)/qty)	Notes (see below table)	<u>Data</u> quality	
Product code									
PR_35_57_11_62_1	Carpet - tile, tufted (pile material 1000 - 1100 g/m ² recycled polyamide 6, heavy bitumen base with fibre glass reinforcement) (total recycled content = 23.4%)	m²	10.00	213.10	198.00	15.10	ca1	C	
PR_35_57_11_62_2	Carpet - tile, needled (pile material 700 - 800 g/m ² polypropylene, heavy bitumen base with fibre glass reinforcement)	m²	4.31	151.49	145.57	5.92	ca2	C	
PR_35_57_11_62_3	Carpet - tile, needled (pile material 1350 - 1450 g/m ² polypropylene, heavy bitumen base with fibre glass reinforcement)	m²	6.18	214.86	206.53	8.33	ca3	С	
PR_35_57_11_62_4	Carpet - tile, needled (pile material 1750 - 1850 g/m ² polypropylene, heavy bitumen base with fibre glass reinforcement)	m²	7.59	259.43	249.47	9.96	ca4	C	
PR_35_57_11_62_5	Carpet - tile, flat woven (pile material (maximum) 700 g/m ² polyethyleneterephthalate (PET), ethylene vinyl acetate (EVA) and felt heavy base) (total recycled content = 12%)	m²	12.30	296.70	258.00	38.70	ca5	C	

www.branz.co.nz/calculators-tools/

Should also consider service life of materials – default materials service life data available at <u>www.branz.co.nz/buildinglca</u> (and select "Data") – see *Building materials replacement (module B4) v2 – final.xlsx*

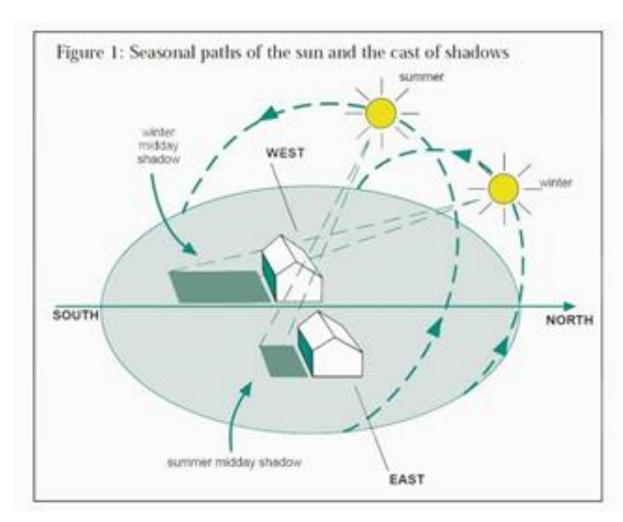
Option 2: CO2RE/HECC

- CO₂RE: Compare whole-of-life embodied carbon for residential wall, floor, roof constructions – taken largely from the BRANZ *House insulation guide* (5th edition) – results presented per m²
- HECC: Calculate a dwelling carbon footprint, using areas of constructions

Option 3: LCAQuick (or other building LCA tool)

- Can develop your own construction build-ups
- Results presented as whole-of-life embodied carbon (using embedded BRANZ service life defaults)

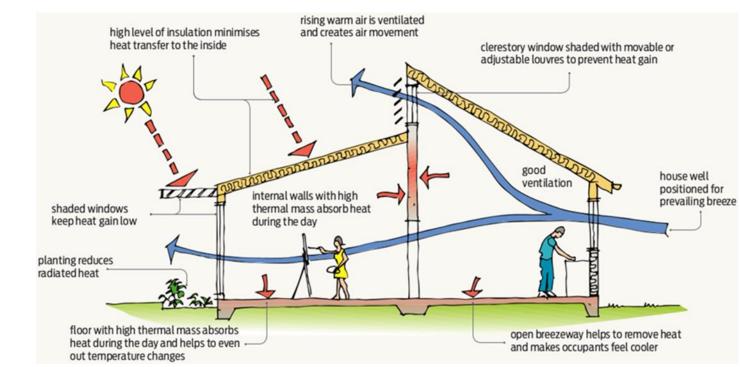
www.branz.co.nz/calculators-tools/
www.nzgbc.org.nz (select Green Homes/Technical Resources)



NZGBC HECC Tool

Consider the simple stuff:

- Liveability
- Room orientation
- Seasonal sun paths
- Solar access/shading
- Prevailing warm/cold winds
- Supplementary natural ventilation
- Adjacent trees/structures

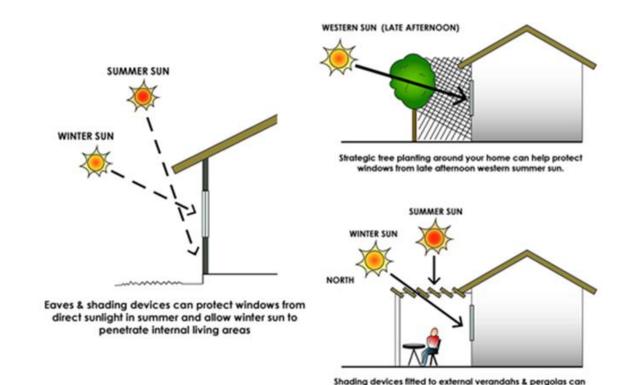


Other considerations: Using the breeze

Narrow plan across prevailing breeze facilitates internal cross-flow

Enhance with stack effect ventilation

Cooling will become more important (IEQ)



Other considerations: Glazing

Exterior glazing is critical for overheating/cooling:

- Manage north and west facing glazing
- Consider the solar heat gain coefficient (SHGC) of the glass
- Opening percentages/location (ventilation)

Even high-performance windows/doors are significantly less thermally efficient than the wall they are installed in

allow winter sun to penetrate internal living areas while blocking

the harsh summer sun

Other considerations: MDH passive principles

Orientation Glazing Shade

Fewer dwellings per 'block' Articulation

Other considerations: Reduce reticulated water use

- Designs that reduce water use result in:
- Minimal impact on lifestyle
- Lower energy use
- Improved sustainability as water shortages become more common

When tested in accordance with AS/NZS 6400

Intended for use in mains pressure systems

For more information refer to:

www.waterefficiency.govt.nz

Only requires:

- Water-efficient fittings
- Rainwater harvesting
- Changes to occupant behaviour

Other considerations: Energy-efficient water heating

Most energy efficient:

- Heat pumps (with CO₂ refrigerant)
- Wetbacks on compliant wood and pellet burners (when used regularly)

• Solar

Other considerations: Energy-efficient water heating

BRANZ research under way:

• Three photovoltaic direct systems and one heat pump system (being compared to standard electric HWC)

Other considerations: Photovoltaic (PV) power systems

Improved quality/durability

Shorter payback period

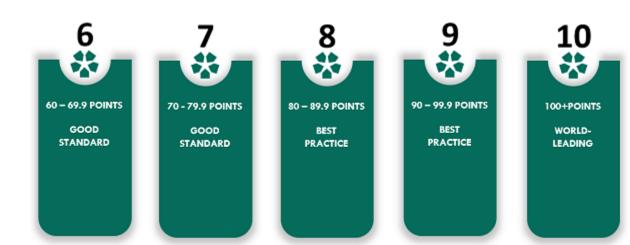
Potential 40–70% reduction in energy use

Key messages

Key messages

- Best approach is to analyse specific designs in specific locations upskill on available tools
- Some starter "rules of thumb" to think about:
 - Increase construction R values
 - Expose the floors as much as possible
 - Compact form
 - WWR 15 25%
 - Orientate north, with most windows facing north and some facing east.
 - Reduce house size

Key messages


- Assess carbon intensity of materials and constructions using free BRANZ tools, and NZGBC HECC tool
- Ensure timber / engineered woods from sustainable forestry e.g. FSC or PEFC
- Other opportunities, for example:
 - Good passive solar design
 - Ventilation
 - Managing water demand
 - Water heating
 - Potential for PV

Key organisations

A number of organisations are focused on improving building performance:

- NZGBC
- Passive House Institute New Zealand
- Eco Design Advisors
- SUPERHOME movement
- Lifemark
- Beacon Pathway
- BRANZ

Useful links

BRANZ zero-carbon built environment research programme www.branz.co.nz/environment-zero-carbon-research/transition/

Building LCA www.branz.co.nz/buildinglca

CO2NSTRUCT www.branz.co.nz/co2nstruct

LCAQuick: www.branz.co.nz/lcaquick

Building LCA case studies www.branz.co.nz/pubs/case-studies/lcaquick/

Datasheets <u>www.branz.co.nz/buildinglca</u> (and select 'Data')

Contact: <u>david.dowdell@branz.co.nz</u>

the paint the professionals use

Thanks

We really appreciate the effort you have made to attend

